Appendix I

We wish to relate the coefficients B, B_{1}, in Eq. (IV-4) to A and A_{1} in Eq. (IV-1). For small warping we may express the energy in the form

$$
\begin{equation*}
E=\frac{\hbar^{2} k_{o}^{2}}{m^{*}}\left[\frac{1}{2}\left(k / k_{o}\right)^{2}+r\left(k / k_{o}\right)^{4} Y_{4}(\theta, \phi)+s\left(k / k_{o}\right)^{6} Y_{6}(\theta, \phi)\right] \tag{A-1}
\end{equation*}
$$

which is just Eq. (I-4) with $s=r t$.
Furthermore

$$
\begin{equation*}
\left(\frac{\partial \mathrm{E}}{\partial \mathrm{k}}\right)_{\mathrm{E}_{\mathrm{F}}}=\frac{\hbar^{2} \mathrm{k}_{\mathrm{o}}}{\mathrm{~m}^{*}}\left[\left(\frac{\mathrm{k}}{\mathrm{k}_{\mathrm{o}}}\right)+4 \mathrm{r}\left(\frac{\mathrm{k}}{\mathrm{k}_{\mathrm{o}}}\right)^{3} \mathrm{Y}_{4}(\theta, \phi)+6 \mathrm{~s}\left(\frac{\mathrm{k}}{\mathrm{k}_{\mathrm{o}}}\right)^{5} \mathrm{Y}_{6}(\theta, \phi)\right] \tag{A-2}
\end{equation*}
$$

where the derivative is evaluated at the Fermi energy.
Now we know that

$$
\begin{equation*}
\left(\frac{\partial \mathrm{E}}{\partial \mathrm{k}}\right)_{E_{F}}\left(\frac{\partial \mathrm{k}}{\partial E}\right) E_{F}=1 \tag{A-3}
\end{equation*}
$$

in any direction in k space. Equation (IV-4) gives $\left(\frac{\partial \mathrm{k}}{\partial \mathrm{E}}\right)_{\mathrm{E}_{\mathrm{F}}}$.
We use the subscripts $1,2,3$ to indicate the [100], [110], and [111] directions: the Kubic harmonics and $\left(\frac{\mathrm{k}}{\mathrm{k}_{\mathrm{o}}}\right)$ are evaluated in these directions. For example

$$
\begin{equation*}
\mathrm{k}_{1}=\left(\frac{\mathrm{k}}{\mathrm{k}_{\mathrm{o}}}\right)_{1}=\left(1+\mathrm{A}+\mathrm{A}_{1}\right) \tag{A-4}
\end{equation*}
$$

using $Y_{4}[100]=Y_{6}[100]=1$ in Eq. (IV - 1).
Let us introduce the notation

$$
\begin{equation*}
\left[\left(\frac{k}{k_{o}}\right)_{i}+4 r\left(\frac{k}{k_{o}}\right)_{i}^{3} Y_{4}(i)+6 s\left(\frac{k}{k_{o}}\right)_{i}^{5} Y_{6}(i)\right]=a_{i}\left(A, A_{1}, r, s\right) \tag{A-5}
\end{equation*}
$$

where i runs from 1 to 3.
Substituting Eqs. (A-2), (A-5) and (IV-2) into.Eq. (A-3) we obtain

$$
\begin{equation*}
\left(1+B+B_{1}\right) a_{1}=\left(1-\frac{B}{4}-\frac{13}{8} B_{1}\right) a_{2}=\left(1-\frac{2 B}{3}+\frac{16}{9} B_{1}\right) a_{3} \tag{A-6}
\end{equation*}
$$

From this we obtain two linear equations for B and B_{1} whose solution is

$$
\begin{aligned}
& B=\frac{\left|\begin{array}{l}
\left(a_{2}-a_{1}\right)\left(a_{1}+\frac{13 a_{2}}{8}\right) \\
\left(a_{3}-a_{1}\right)\left(a_{1}-\frac{16 a_{3}}{9}\right)
\end{array}\right|}{\left|\begin{array}{l}
\left(a_{1}+\frac{a_{2}}{4}\right)\left(a_{1}+\frac{13 a_{2}}{8}\right) \\
\left(a_{1}+\frac{2 a_{3}}{3}\right)\left(a_{1}-\frac{16 a_{3}}{9}\right)
\end{array}\right|} \\
& B_{1}=\left|\left(a_{1}+\frac{2 a_{3}}{3}\right)\left(a_{3}-a_{1}\right)\right| \\
& \left|\left(a_{1}+\frac{a_{2}}{4}\right)\left(a_{1}+\frac{13 a_{2}}{8}\right)\right| \\
& \left|\left(a_{1}+\frac{2 a_{3}}{3}\right)\left(a_{1}-\frac{16 a_{3}}{9}\right)\right|
\end{aligned}
$$

The a_{i} depend on r and s of Eq. (A-1); we now obtain these. We substitute

$$
\begin{equation*}
\left(\frac{k}{k_{0}}\right)=1+A Y_{4}(\theta, \phi)+A_{1} Y_{6}(\theta, \phi)=k_{i} \tag{IV-1}
\end{equation*}
$$

into the expression for the energy, Eq. (A-1). The energy must be constant on the Fermi surface. By requiring, the energy in the three principal directions to be the same, we obtain

$$
\begin{align*}
& 1 / 2 k_{1}^{2}+r k_{1}^{4}+s k_{1}^{6}=1 / 2 k_{2}^{2}-1 / 4 r k_{2}^{4}-\frac{13}{8} s k_{2}^{6}= \\
& 1 / 2 k_{3}^{2}-2 / 3 r k_{3}^{4}+\frac{16}{9} s k_{3}^{6} \tag{A-7}
\end{align*}
$$

