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Appendix I
We wish to relate the coefficients B, B, in Eq. (IV-4) to A and A1

in Eq. (IV-1). For small warping we may express the energy in the form
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which is just Eq. (I-4) with s = rt.

Furthermore
8 4%k 3 5
(BE) g = —=2 [() +ar (£) v, 0.0 v6s () v 098] (a-2)
F m o o o

where the derivative is evaluated at the Fermi energy.

Now we know that
OE ok
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in any direction in k space. Equation (IV-4) gives (aa—lEQ;)E .
F

We use the subscripts 1, 2, 3 to indicate the [100], [110], and [ 111]

directions: the Kubic harmonics and (—i) are evaluated in these directions.
k

For example =
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using Y4’[ 100] = Y, [100] = 1 in Eq. (IV-1).
Let us introduce the notation
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Eq)i + 4r (K)i Y4 (i) + 68 (H )i Y6(1)] = a, (A,Al, r, s) (A-5)

where i runs from 1 to 3.
Substituting Eqs. (A-2), (A-5) and (IV-2) into Eq. (A-3) we obtain
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From this we obtain two linear equations for B and Bl whose solution
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The:-a.i depend on r and s of Eq. (A-1); we now obtain these. We

substitute
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into the expression for the energy, Eq. (A-1). The energy must be cox;stant
on the Fermi surface. By requiring the energy in the three principal direc-

tions to be the same, we obtain
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